ecdf_estimator
Functions
ecdf_estimator.select_bins Namespace Reference

Functions

def estimate_radii_values (data, subset_sizes, distance_fct, rel_offset=0.05, rel_cutoff=0.05)
 Heuristically determine region in which useful bin/radii values are located. More...
 
def choose_bins (distance_list, possible_bins, n_bins=10, choose_type="uniform_y_dist", min_value_shift=None, max_value_shift=None)
 Heuristically determine reasonable bin/radii values from larger choice. More...
 

Function Documentation

◆ choose_bins()

def ecdf_estimator.select_bins.choose_bins (   distance_list,
  possible_bins,
  n_bins = 10,
  choose_type = "uniform_y_dist",
  min_value_shift = None,
  max_value_shift = None 
)

Heuristically determine reasonable bin/radii values from larger choice.

Parameters
distance_listList of distances to be grouped into the bins.
binsList of possible bin values.
n_binsMaximum amount of bins, which are to be selected. Defaults to 10.
choose_typHeurustic that is used to select bins.
min_value_shiftExclude values that are smaller than min value of distances plus this.
max_value_shiftExclude values that are largr than max value of distances plus this.
Return values
target_valThe value of the target function.

◆ estimate_radii_values()

def ecdf_estimator.select_bins.estimate_radii_values (   data,
  subset_sizes,
  distance_fct,
  rel_offset = 0.05,
  rel_cutoff = 0.05 
)

Heuristically determine region in which useful bin/radii values are located.

Parameters
dataThe whole training data from which some subsets are selected.
subset_sizesThe size of the subsets.
distance_fctFunctions that evaluates (generalized) distance between subset members.
rel_offsetRelative offset to determin interval of reasonable bin values.
rel_cutoffRelative cutoff of the interval of reasonable bin values.
Return values
target_valThe value of the target function.